Some Nonlinear Differential Inequalities and an Application to Hölder Continuous Almost Complex Structures

نویسندگان

  • ADAM COFFMAN
  • YIFEI PAN
چکیده

We consider some second order quasilinear partial differential inequalities for real valued functions on the unit ball and find conditions under which there is a lower bound for the supremum of nonnegative solutions that do not vanish at the origin. As a consequence, for complex valued functions f(z) satisfying ∂f/∂z̄ = |f |α, 0 < α < 1, and f(0) = 0, there is also a lower bound for sup |f | on the unit disk. For each α, we construct a manifold with an α-Hölder continuous almost complex structure where the Kobayashi-Royden pseudonorm is not upper semicontinuous.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Best Proximity Point Results for Almost Contraction and Application to Nonlinear Differential Equation

Berinde [V. Berinde, Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum {bf 9} (2004), 43-53] introduced almost contraction mappings and proved Banach contraction principle for such mappings. The aim of this paper is to introduce the notion of multivalued almost $Theta$- contraction mappings andto prove some best proximity point results for t...

متن کامل

Random differential inequalities and comparison principles for nonlinear hybrid random differential equations

 In this paper, some basic results concerning strict, nonstrict inequalities, local existence theorem and differential inequalities  have been proved for an IVP of first order hybrid  random differential equations with the linear perturbation of second type. A comparison theorem is proved and  applied to prove the uniqueness of random solution for the considered perturbed random differential eq...

متن کامل

A Solution of Riccati Nonlinear Differential Equation using Enhanced Homotopy Perturbation Method (EHPM)

Homotopy Perturbation Method is an effective method to find a solution of a nonlinear differential equation, subjected to a set of boundary condition. In this method a nonlinear and complex differential equation is transformed to series of linear and nonlinear and almost simpler differential equations. These set of equations are then solved secularly. Finally a linear combination of the solutio...

متن کامل

Theory of Hybrid Fractional Differential Equations with Complex Order

We develop the theory of hybrid fractional differential equations with the complex order $thetain mathbb{C}$, $theta=m+ialpha$, $0<mleq 1$, $alphain mathbb{R}$, in Caputo sense. Using Dhage's type fixed point theorem for the product of abstract nonlinear operators in Banach algebra; one of the operators is $mathfrak{D}$- Lipschitzian and the other one is completely continuous, we prove the exis...

متن کامل

Some Nonlinear Inequalities and Applications

Sufficient conditions are given for the relation limt→∞ y(t) = 0 to hold, where y(t) is a continuous nonnegative function on [0,∞) satisfying some nonlinear inequalities. The results are used for a study of large time behavior of the solutions to nonlinear evolution equations. Example of application is given for a solution to some evolution equation with a nonlinear partial differential operator.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009